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Abstract

This work is devoted to the analysis of a finite volume method recently proposed for the numerical computation of a
class of non-homogenous systems of partial differential equations of interest in fluid dynamics. The stability analysis of the
proposed scheme leads to the introduction of the sign matrix of the flux jacobian. It appears that this formulation is equiv-
alent to the VFRoe scheme introduced in the homogeneous case and has a natural extension here to non-homogeneous
systems. Comparative numerical experiments for the Shallow Water and Euler equations with source terms, and a model
problem of two-phase flow (Ransom faucet) are presented to validate the scheme. The numerical results present a conver-
gence stagnation phenomenon for certain forms of the source term, notably when it is singular. Convergence stagnation
has been also shown in the past for other numerical schemes. This issue is addressed in a specific section where an expla-
nation is given with the help of a linear model equation, and a cure is demonstrated.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many interesting phenomena in the field of fluid dynamics are governed by systems of partial differential
equations of the hyperbolic type. When they state a conservation law the corresponding system is homoge-
neous. If the system of equations expresses the rate at which some quantities are created or destroyed then
it includes source terms. The general form of such a system in one spatial dimension can be written as:
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oW
ot
þ oF ðW Þ

ox
¼ Qðx; t;W Þ ð1Þ
where x is the space variable, t the time, W ðx; tÞ is the variables vector, F ðW Þ the flux vector and Qðx; t;W Þ the
source vector. The system is to be solved subject to appropriate initial and boundary conditions:
W ðx; 0Þ ¼ W 0ðxÞ ð2Þ
W ð0; tÞ ¼ W aðtÞ; W ðL; tÞ ¼ W bðtÞ ð3Þ
The Shallow Water equations (SWE) describing one dimensional (1D) water flow in a channel with a variable
bed and the Euler equations (EUL) describing 1D gas flow in a nozzle [38] of variable cross section can be
expressed as system (1). Note that when the channel bed (SWE) or the nozzle cross section (EUL) becomes
discontinuous, the source term Q becomes stiff, and system (1) becomes singular, hence the difficulty to numer-
ically solve it. Also the common pressure multifluid model can be described by system (1). However it is well
known that the flux jacobian of the common pressure multifluid model has characteristic roots that can be-
come complex. This implies that the system of equations is no longer hyperbolic and the corresponding initial
value problem may be ill posed.

From these remarks, one deduces the necessity of devising robust and efficient schemes to accurately solve
non-homogenous systems.

To this purpose, considerable work has been developed, during the last decade, to solve problems of the
form (1)–(3) by finite volume methods.

Although upwind schemes were initially developed for the Euler equations, the number of papers devoted
to the numerical solution of Shallow Water equations by means of Riemann solvers has greatly increased since
the early works [27,2]. Specifically, efficient discretisations of source terms have been proposed by a large num-
ber of authors [53,44,27]. In particular, one must mention the class of well-balanced schemes, designed to
respect steady states. These schemes have been extensively studied by Le Roux and co-workers [29,32,33] in
the scalar case, and in the framework of the SWE with topography in [11–13,43] and with friction in [16]. Zhou
et al. [63] proposed the surface gradient method for Shallow Water equations with source terms. Ming Tseng
[47] presents different approches using TVD-MacCormack schemes, for the simulation of one dimensional
open channel flows, with rapidly varying bottom topography. More recently, in [7], a well-balanced scheme
is built based on local hydrostatic reconstructions.

In [62], the authors propose a high order weighted essentially non-oscillatory finite volume scheme
(WENO), and Runge–Kutta discontinuous Galerkin finite element methods (RKDG), for solving hyperbolic
systems of conservation laws with source term.

Xing and Shu in [61] develop a well balanced high order finite volume WENO scheme for the SWE, which is
non-oscillatory, well balanced (satisfying the exact property) for still water, and genuinely high order in
smooth regions. Other first and second order schemes have been applied to the SWE using the idea of balanc-
ing the source term and the flux gradients, for example the wave propagation algorithm by LeVeque [45], the
kinetic scheme by Xu [57], and Perthame and Simeoni [48], central-upwind schemes proposed by Kurganov
and Levy [39], and a family of flux-splitting numerical solvers proposed in [51]. It is worth pointing out that
the contributions mentioned above, devoted to the numerical solution of hyperbolic problems with stiff source
terms, do not address in general the question of convergence of the method to the exact solution, in particular
when the system is singular.

In a different field, two-phase flow problems raise numerous difficulties as regards the application of clas-
sical numerical methods. This is mainly due to nonlinear interphase interactions. Finite Elements methods
have been used in the context of two-phase flows, when one is mainly interested in steady states, and wave
effects are neglected [30].

Finite volume methods have been also extended to two-phase problems [24]. One way is to consider the
mixture equilibrium model which enables the application of classical upwind schemes [31].

But in mixtures where the kinematic or thermal non-equilibrium is significant, one has to consider a system
of equations for each phase, and two-fluid models have to be attacked [36]. In this case, the presence of non-
conservative products introduces some conceptual difficulties [20]. Nevertheless considerable improvements in
the application of finite volumes to two-phase flows have been achieved [50,56,25,18,40]. For example in [59],
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the authors consider the case of a small difference between the liquid and gas velocities, and in [19], the case of
a small ratio of gas to liquid densities, and in both cases these hypothesis are used to introduce some interest-
ing simplifications. But only few works have been presented in the case of multidimensional two-fluid prob-
lems in high non-equilibrium configurations [26,1]. These works present highly elaborate and efficient
methods, dedicated specifically to two-phase flows.

The challenge remains to devise finite volume schemes for general non homogeneous systems (either single
or multiphase flows), which are at the same time accurate and stable, and not too CPU expensive.

The above mentioned appropriate finite volume schemes for two-phase flows, often rely upon approximate
Riemann solvers that are computationally expensive due to the need for the calculation of exact or approx-
imate jacobian field decompositions.

In order to construct simpler and less expensive methods a particular class of non-conservative problems is
considered in this work: It is assumed that the solution to the Riemann problem associated with system (1) is
self similar.

This happens, for instance, if the source term can be written as:
Qðx;W Þ ¼ GðW Þ � db
dx

ð4Þ
where bðxÞ is a scalar function and G a vector function. This is the case for many problems of interest in fluid
dynamics and in particular for the examples mentioned above.

This work is a first step towards a multidimensional finite volume solver for non-homogeneous systems,
keeping in mind the need for simplicity, low cost and efficiency.

The non-homogeneous Riemann solver proposed in this paper (hereafter called SRNH) belongs to a large
family of methods using only physical flux computations and average states instead of jacobian eigenvectors
[58] and reveals to be both robust and accurate as well as computationally cheap. Moreover the extension to
2D calculations is easy and efficient [9,10].

The SRNH scheme depends upon a local diffusion controlling parameter. A mathematical analysis of the
scheme both in the scalar equation, and in the case of a linear system of equations, shows that if one seeks a
monotone scheme, this parameter can only be equal to a fixed value, which leads to the introduction of a sign
matrix in the scheme.

After giving a description of the method, its analysis is presented. As an illustration of the scheme efficiency,
we present some results for singular problems like a dam break over a discontinuous bed, the shock tube prob-
lem of gas dynamics in a duct of discontinuous cross section and the classical Ransom Faucet problem in one
space dimension. Results obtained show that the proposed scheme respects the well known equilibrium C-
property for Shallow-water equations, and gives accurate solutions for the two-phase problem with few mesh
points. It will also be shown that, in general, schemes not based upon exact Godunov solvers are not able to
converge uniformly to the exact solution when the source function is singular although the numerical solution
computed on a mesh of given finite size can be acceptable in many cases.

2. Construction of SRNH scheme

Numerical approximations to the solution of (1)–(3) are sought within a finite volume formulation. For this
end the domain of integration is discretised into finite volume cells. The approximate solution is assumed con-
stant within each cell, i.e.: un

i denotes the average of W ðx; tÞ within cell i at time tn. The length of cell i is
Dxi ¼ xiþ1=2 � xi�1=2 and the time step Dt ¼ tnþ1 � tn. Unless otherwise specified, the mesh spacing will be
assumed constant.

In deriving the scheme it will be assumed that the system admits an exact or approximate jacobian, which is
strictly hyperbolic (diagonalisable in R), and which is invertible. Nevertheless it will be shown that the method
can also be applied to systems that are not strictly hyperbolic or that are hyperbolic only in a limited region of
the phase space.

Let us recall the recent theoretical result of J.M. Hong [35].
Suppose AðW Þ ¼ oF ðW Þ

oW is diagonalizable in R, with distinct eigenvalues kkðW Þ, such that kkðW Þ 6¼ 08W ; 8k;
in case b ¼ bðxÞ is a Lipschitz continuous function of x, the Cauchy problem (1), (2) admits a weak solution.
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To establish the proof, the author uses Glimm’s random choice method, constructs solutions of local Rie-
mann problems of extended systems, and show convergence by regularisation.

The author shows that, provided the system is strictly hyperbolic, and for initial Riemann data close
enough, the solution of a local Riemann problem, exists, is unique, self similar, and consists of connecting left
and right states by shock waves, contact discontinuities, rarefaction waves and a stationary wave discontinuity.

In a Godunov type scheme the solution is advanced in time by solving the Riemann problems that arise at
cell interfaces after discretisation. Assume the self similar solution to the Riemann problem associated to Eq.
(1) with initial conditions:
W ðx; 0Þ ¼ W 0ðxÞ ¼
W L if x < 0

W R if x > 0

�
ð5Þ
is:
W ðx; tÞ ¼ Rs
x
t
;W L;W R; b

� �
ð6Þ
For some forms of the functions G and b, the Riemann solution Rs can be exactly computed (see [3] for the
Shallow Water equations, [42] for the isentropic Euler equations and [5] for the full non-isentropic Euler
equations).

Integration of Eq. (1) over the domain ½xi�1=2; xiþ1=2� � ½tn; tnþ1� leads to:
W nþ1
i ¼ W n

i �
Dt
Dx

F W n
iþ1

2

� �
� F W n

i�1
2

� �h i
þ DtQn

i ð7Þ
where W n
iþ1=2 is, in principle, the Riemann solution at cell interface iþ 1=2:
W n
iþ1=2 ¼ Rsð0;W n

i ;W
n
iþ1; bÞ ð8Þ
and Qn
i an approximation of:
Qn
i ¼

1

DxDt

Z tnþ1

tn

Z x
iþ1

2

x
i�1

2

Qðx;W Þdxdt ð9Þ
The practical calculation of Rs can be computationally very expensive for arbitrary initial data. Moreover
some forms of the source term can lead to singularities that make Rs discontinuous at the cell interface (see
Fig. 1 and some of the examples in the following sections).

In order to avoid these difficulties and find an approximation for W n
iþ1=2 at less cost, the system of differ-

ential equations is integrated again, this time over the domain
½xi; xiþ1� � ½tn; tn þ hn

iþ1=2� that contains xiþ1=2 as Fig. 2 shows.
This leads to:
W nþh
iþ1=2 ¼ 1

2
ðW n

i þ W n
iþ1Þ �

hn
iþ1=2

Dx
½F ðW n

iþ1Þ � F ðW n
i Þ� þ hn

iþ1=2Qn
iþ1=2 ð10Þ
Fig. 1. The Riemann problem solution at a cell interface.



Fig. 2. Integration of the equations around cell-edge xiþ1=2.

S. Sahmim et al. / Journal of Computational Physics 226 (2007) 1753–1783 1757
where now W nþh
iþ1=2 can be thought of as an approximation to the average of the Riemann solution Rs over the

length ½xi; xiþ1� at time tn þ hn
iþ1=2. By doing so any discontinuities in W at the cell interface are formally

smeared out.
In the rest of this paper, however, and for the sake of notation simplicity, W nþh

iþ1=2 will be simply written as
W n

iþ1=2 in the understanding that this corresponds to the averaged Riemann solution in the cell ½xi; xiþ1� at time
tn þ hn

iþ1=2 as explained.
Also Qn

iþ1=2 must be evaluated as an approximation to:
1

Dxhn
iþ1=2

Z xiþ1

xi

Z tnþhn
iþ1=2

tn

Qðx;W Þdxdt ð11Þ
in a judicious way (to be dealt with later).
In [8], hn

iþ1=2 is taken as a fraction of the current time step:
hn
iþ1=2 ¼ an

iþ1=2

Dt
2

ð12Þ
Where an
iþ1=2 is a real positive number that remains arbitrary in principle.

It is worth noting that in view of (12), the evaluation of W iþ1=2 (the predictor or intermediate state) is made
with a local time step. Also, at least in principle, in order that Eq. (10) be consistent, hn

iþ1=2 should not be larger
than a certain limit �hn

iþ1=2 that corresponds to the time taken by the fastest wave generated at xiþ1=2 to leave the
cell ½xi; xiþ1� (see Fig. 2):
hn
iþ1=2 6

�hn
iþ1=2;

�hn
iþ1=2 ¼

Dx
2Sn

iþ1=2

ð13Þ
where Sn
iþ1=2 is an approximation to the modulus of the velocity of the fastest wave in the system. Otherwise the

flux at either xi or xiþ1 could not be taken as F ðuiÞ or F ðuiþ1Þ respectively. Since it is costly to obtain the exact
solution of the Riemann problem at xiþ1=2 and hence the speed of the waves, an approximation to Sn

iþ1=2 can be
taken as the local Rusanov velocity [54]:
Sn
iþ1

2
¼ max

p¼1;...;m
ðmaxðjkn

p;ij; jk
n
p;iþ1jÞÞ ð14Þ
kn
p;i being the pth eigenvalue of the flux jacobian evaluated at the state W n

i . In view of this definition one can
simply take hn

iþ1=2 as a fraction of �hn
iþ1=2:
hn
iþ1=2 ¼ an

iþ1=2
�hn

iþ1=2 ð15Þ
what gives simply:
hn
iþ1=2 ¼

Dx
2

an
iþ1=2

Sn
iþ1=2

ð16Þ
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The analysis performed in next section will provide the appropriate expression for an
iþ1=2 that makes the global

scheme fulfill certain stability properties. The choice (16) instead of (12) has considerable advantages when the
scheme is extended to two dimensions since it makes cancel the Dx factor in both the flux difference and the
source term. Recall that in this work we are dealing with source terms of the form (4) that, after discretisation,
give rise to expressions of the form:
Qn
iþ1=2 ¼ Gn

iþ1=2

bn
iþ1 � bn

i

Dx
ð17Þ
Hence the SRNH scheme can be formally written:
W n
iþ1

2
¼ 1

2
ðW n

iþ1 þ W n
i Þ �

an
iþ1

2

2Sn
iþ1

2

ðF ðW n
iþ1Þ � F ðW n

i ÞÞ þ
an

iþ1
2

2Sn
iþ1

2

Gn
iþ1=2ðbn

iþ1 � bn
i Þ

W nþ1
i ¼ W n

i � Dt
Dx F W n

iþ1
2

� �
� F W n

i�1
2

� �� �
þ Dt

2Dx Gn
i ðbn

iþ1 � bn
i�1Þ

8>><>>: ð18Þ
Gn
iþ1=2 and Gn

i being judicious approximations of G at interface xiþ1=2 and cell i respectively, and an
iþ1=2 remains a

local parameter that must be chosen.
Remark that the SRNH scheme appears as an upwind method in which instead of upwinding the numerical

flux, the variables are upwinded to construct an average state at the interface, W n
iþ1=2, which is then used in the

physical flux and source functions. The hyperbolic character of the system is not strongly needed here.
3. Introduction of the sign matrix in the SRNH scheme

3.1. Analysis of SRNH scheme in the scalar case

The choice of an
iþ1=2 in the SRNH scheme remains arbitrary. For instance in the linear case if a = 1, the

SRNH scheme reduces to first order upwind method and for a ¼ aDt=Dx, it falls back to Lax–Wendroff
method [28]. For large values of alpha, the numerical diffusion of the scheme correspondingly increases. A
careful choice of the parameter can furnish the scheme (in the homogeneous case) with desirable properties
such as stability, monotonicity and a maximum principle. In what follows, an analysis of SRNH scheme is
made in the homogeneous case, with the aim of ensuring the above mentioned properties.

In the case of a homogeneous scalar equation, SRNH scheme can be written:
un
iþ1

2
¼ 1

2
ðun

iþ1 þ un
i Þ �

an
iþ1

2

2Sn
iþ1

2

ðf ðun
iþ1Þ � f ðun

i ÞÞ

unþ1
i ¼ un

i � r f un
iþ1

2

� �
� f un

i�1
2

� �� �
8>><>>: ð19Þ
where Sn
iþ1

2
¼ maxðjf 0ðun

iþ1Þj; jf 0ðun
i ÞjÞ is the local Rusanov velocity, and r ¼ Dt=Dx.

Proposition 1. Suppose f is a monotone C1 function, then under the two conditions:

(i)
Sn

iþ1=2

jf 0ðan
iþ1=2

Þj 6 an
iþ1=2 6 c

Sn
iþ1=2

jf 0ðan
iþ1=2

Þj ; 8i 2 Z; n 2 N

(ii) rcA 6 1

where: c P 1, A ¼ max jf 0ðX Þj such that jX j 6 cjju0jjL1ðRÞ, and an
iþ1=2 is a Roe state, determined by the mean

value theorem:
f ðun
iþ1Þ � f ðun

i Þ ¼ f 0ðan
iþ1=2Þðun

iþ1 � un
i Þ; ð20Þ
the scheme (19) respects the local maximum principle:
min
i2Z

un
i 6 min

i2Z
unþ1

i 6 max
i2Z

unþ1
i 6 max

i2Z
un

i : ð21Þ
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Proof. The result is obtained by writing
dn
iþ1

2
¼

an
iþ1

2

sn
iþ1

2

f 0 an
iþ1

2

� �
ð22Þ

un
iþ1

2
¼ 1

2
1þ dn

iþ1
2

h i
un

i þ
1

2
1� dn

iþ1
2

h i
un

iþ1 ð23Þ
and
unþ1
i ¼ un

i � rf 0ðan
i Þ un

iþ1
2
� un

i�1
2

� �
ð24Þ
Then expressing unþ1
i as a convex combination of un

i�1; u
n
i , and un

iþ1 ends the proof. h

Proposition 2. Suppose that f 0 does not change sign. Under the two following conditions:

(1) an
iþ1=2 ¼ �c

Sn
iþ1=2

jf 0ðan
iþ1=2

Þj, 8i 2 Z, n 2 N with �c a constant, and �c 2 ½1; c�,
(2) rcA 6 1.

Then scheme (19) is monotone.

Proof. A sufficient condition for fulfilling the first condition is to fix �c 2 ½1; c� and choose:
an
iþ1=2 ¼ �c

Sn
iþ1=2

jf 0ðan
iþ1=2Þj

: ð25Þ
In such case the predictor step becomes:
un
iþ1

2
¼ 1

2
ð1þ �c sgn ðf 0ÞÞun

i þ 1
2
ð1� �c sgn ðf 0ÞÞun

iþ1 ð26Þ
and the corrector step can be written in the following conservative form: unþ1
i ¼ un

i � rðf ðun
iþ1=2Þ

�f ðun
i�1=2ÞÞ ¼ Hðun

i�1; u
n
i ; u

n
iþ1Þ

Since �c P 1 and r�cA 6 1, the operator H is an increasing function with respect to each one of its arguments,
and thus it follows that the scheme SRNH is monotone. h

Theorem 3. The scheme SRNH converges to the unique entropy solution of the scalar homogeneous equation

Proof. With standard conditions on the initial solution and the function f, the Propositions 1 and 2 lead
directly to the result. The proof is left to the reader. h
3.1.1. Optimization of parameter a
Remark that the second part of the first condition of Proposition (2) above, is to ensure that the state un

iþ1
2

and hence an
i remains finite. Instead of this one can impose the sufficient but more restrictive condition that the

intermediate state un
iþ1=2 remains between the minimum and maximum of states un

i and un
iþ1. From (22) this is

realized if: 1þ dn
iþ1

2
P 0 and 1� dn

iþ1
2
P 0. Then it follows that:
dn
iþ1

2

��� ��� 6 1 () an
iþ1

2
6

Sn
iþ1

2

f 0 an
iþ1

2

� ���� ��� ð27Þ
which is equivalent to putting c = 1 in ðiÞ of Proposition (1) and then:
an
iþ1

2
¼

Sn
iþ1

2

f 0 an
iþ1

2

� ���� ��� ð28Þ
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Substituting back in (19) and using (20) gives the following form for the SRNH scheme:
un
iþ1

2
¼ 1

2
ðun

iþ1 þ un
i Þ � 1

2
sgn f 0 an

iþ1
2

� �h i
ðun

iþ1 � un
i Þ

unþ1
i ¼ un

i � r f un
iþ1

2

� �
� f un

i�1
2

� �� �
8><>: ð29Þ
where sgn ðxÞ stands for:
sgn ðxÞ ¼
x
jxj if x 6¼ 0

0 if x ¼ 0

(
ð30Þ
It appears that the predictor step leads to the upwinding of the variables in a similar way to the VFRoe scheme
[22,46].

3.2. Linear homogeneous systems

The following linear strictly hyperbolic system is considered:
oW
ot þA oW

ox ¼ 0; ðx; tÞ 2 D� R�þ; D � R

W ðx; 0Þ ¼ u0ðxÞ; x 2 D

�
ð31Þ
with W : D� Rþ ! X a vector of m conserved quantities, or state variables, X is a bounded open domain in
Rm, A is a square matrix MmðRÞ.

We denote k1 < k2 < � � � < km the eigenvalues of the system, and we write A ¼ RKR�1, where K is the diag-
onal form of A and R�1 is the inverse of R.

For this problem the SRNH scheme presented in [8,55] reads:
W n
iþ1

2
¼ 1

2
ðW n

iþ1 þ W n
i Þ �

an
iþ1

2

2Sn
iþ1

2

AðW n
iþ1 � W n

i Þ

W nþ1
i ¼ W n

i � rA W n
iþ1

2
� W n

i�1
2

� �
8>><>>: ð32Þ
where
Sn
iþ1

2
¼ max

p¼1;...;m
ðjkpjÞ ¼ qðAÞ; ð33Þ
with qðAÞ the spectral radius of A and an
iþ1

2
is a control parameter as before.

Writing the above system in characteristic form (V ¼ R�1W ), one gets:
V n
iþ1

2
¼ 1

2
ðV n

iþ1 þ V n
i Þ �

an
iþ1

2

2Sn
iþ1

2

KðV n
iþ1 � V n

i Þ;

V nþ1
i ¼ V n

i � rK V n
iþ1

2
� V n

i�1
2

� �
;

8>><>>: ð34Þ
which, for each component vp, leads to:
ðvpÞniþ1
2
¼ 1

2
ððvpÞniþ1 þ ðvpÞni Þ �

an
iþ1

2

2Sn
iþ1

2

kpððvpÞniþ1 � ðvpÞni Þ;

ðvpÞnþ1
i ¼ ðvpÞni � rkp ðvpÞniþ1

2
� ðvpÞni�1

2

� �
:

8>><>>: ð35Þ
for p ¼ 1; . . . ;m.
This is the scheme SRNH applied to the characteristic unknowns vp.
Using the analysis of Section 3.1 and writing the SRNH scheme for the characteristic unknowns vp under

the form (29), one finds that the control parameter an
iþ1

2
depends on the local eigenvalue for each characteristic

equation. Hence it is clear that for the overall system it must have a diagonal matrix form:
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an
iþ1

2
¼

Sn
iþ1

2

jk1j 0 . . . 0

0
Sn

iþ1
2

jk2j
. . . ..

.

..

.
0 . .

.
0

0 . . . 0
Sn

iþ1
2

jkmj

0BBBBBBBBB@

1CCCCCCCCCA
¼ Sn

iþ1
2
jKj�1 ð36Þ
Going back to the conservative form ðW ¼ RV Þ one gets:
W n
iþ1

2
¼ 1

2
ðW n

iþ1 þ W n
i Þ � 1

2
sgn ðAÞðW n

iþ1 � W n
i Þ;

W nþ1
i ¼ W n

i � r F W n
iþ1

2

� �
� F W n

i�1
2

� �� �
;

8<: ð37Þ
with sgn ðAÞ ¼ R sgn ðKÞR�1 and sgn ðKÞ ¼ diag kk
jkk j

� �
.

3.3. Extension of SRNH scheme to non-homogeneous nonlinear hyperbolic systems

The SRNH scheme (18) can be directly applied to system (1), but an
iþ1=2 must be optimized as it has been

done in the linear case. In order to follow the strategy of previous section, the problem is first locally linear-
ized. We suppose that there exists an average state W ðW n

i ;W
n
iþ1Þ, such that the relation:
F ðW n
iþ1Þ � F ðW n

i Þ ¼ AðW ðW n
i ;W

n
iþ1ÞÞðW n

iþ1 � W n
i Þ: ð38Þ
is realized; for instance the Roe average state [52] of the system verifies exactly this property. The predictor
step becomes then:
W n
iþ1

2
¼ 1

2
ðW n

iþ1 þ W n
i Þ �

an
iþ1

2

2Sn
iþ1

2

An
iþ1=2ðW n

iþ1 � W n
i Þ þ

an
iþ1

2

2Sn
iþ1

2

Gn
iþ1=2ðbn

iþ1 � bn
i Þ ð39Þ
where
An
iþ1=2 ¼ AðW ðW n

i ;W
n
iþ1ÞÞ ¼ Rn

iþ1
2
Kn

iþ1
2

Rn
iþ1

2

� ��1

ð40Þ
In analogy with the linear case we introduce the local characteristic variables V ¼ R�1W around cell interface
xiþ1=2 as follows:
V n
iþ1=2 ¼ Rn

iþ1
2

� ��1

W n
iþ1=2

V n;�
iþ1=2 ¼ Rn

iþ1
2

� ��1

W n
i

V n;þ
iþ1=2 ¼ Rn

iþ1
2

� ��1

W n
iþ1

ð41Þ
what leads to the following expression for the predictor step of SRNH scheme for the local characteristic
variables:
V n
iþ1

2
¼ 1

2
ðV n;þ

iþ1=2 þ V n;�
iþ1=2Þ �

an
iþ1

2

2Sn
iþ1

2

Kn
iþ1=2ðV

n;þ
iþ1=2 � V n;�

iþ1=2Þ þ
an

iþ1
2

2Sn
iþ1

2

Rn
iþ1

2

� ��1

Gn
iþ1=2ðbn

iþ1 � bn
i Þ ð42Þ
Following the same reasoning as in the linear system case, it turns out that a must be a matrix of the form

an
iþ1

2
¼ Sn

iþ1
2
Kiþ1

2

��� ����1

what leads to:
V n
iþ1

2
¼ 1

2
ðV n;þ

iþ1=2 þ V n;�
iþ1=2Þ �

1

2
Kiþ1

2

��� ����1

Kn
iþ1=2ðV

n;þ
iþ1=2 � V n;�

iþ1=2Þ þ
1

2
Kiþ1

2

��� ����1

Rn
iþ1

2

� ��1

Gn
iþ1=2ðbn

iþ1 � bn
i Þ ð43Þ
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then coming back to the conservative variables:
W n
iþ1

2
¼ 1

2
ðW n

iþ1 þ W n
i Þ �

1

2
Rn

iþ1
2
Kiþ1

2

��� ����1

Kn
iþ1=2 Rn

iþ1
2

� ��1

ðW n
iþ1 � W n

i Þ

þ 1

2
Rn

iþ1
2
Kiþ1

2

��� ����1

Rn
iþ1

2

� ��1

Gn
iþ1=2ðb

n
iþ1 � bn

i Þ ð44Þ
the SRNH scheme for problem (1) can thus be written:
W n
iþ1

2
¼ 1

2
ðW n

iþ1 þ W n
i Þ � 1

2
sgn ½An

iþ1=2�ðW n
iþ1 � W n

i Þ þ 1
2
jAn

iþ1=2j
�1Gn

iþ1=2ðbn
iþ1 � bn

i Þ

W nþ1
i ¼ W n

i � Dt
Dx F W n

iþ1
2

� �
� F W n

i�1
2

� �� �
þ Dt

2Dx Gn
i ðbn

iþ1 � bn
i�1Þ

8<: ð45Þ
where
sgn ½An
iþ1=2� ¼ Rn

iþ1
2
Kn

iþ1
2

��� ����1

Kn
iþ1

2
Rn

iþ1
2

� ��1

ð46Þ
and
jAn
iþ1=2j

�1 ¼ Rn
iþ1

2
Kn

iþ1
2

��� ����1

Rn
iþ1

2

� ��1

ð47Þ
The particular approximation used to discretize the source term, Gn
iþ1=2 and Gn

i above, are left open until the
particular system of equations to be solved is chosen in order to fulfill particular steady state properties of the
system considered.

Remark. The practice shows that the simple classical average state:
W ðW n
i ;W

n
iþ1Þ ¼ 1

2
ðW n

iþ1 þ W n
i Þ: ð48Þ
can be used instead of the exact Roe state at considerably less computational cost [46].
4. Application of the SRNH scheme to the shallow water equations with irregular topography

We consider here the movement of a layer of fluid in one dimension over a fixed bed. The bed elevation with
respect to a fixed horizontal datum is prescribed by function zðxÞ. The fluid layer is hðx; tÞ deep and moves
horizontally with velocity uðx; tÞ. The elevation of the fluid surface is fðx; tÞ ¼ hðx; tÞ þ zðxÞ. Pressure is
assumed to be hydrostatic. Under these assumptions the SWE read:
o

ot

h

hu

� �
þ o

ox

hu

hu2 þ 1
2
gh2

� �
¼

0

�gh dz
dx

" #
ð49Þ
and g is the acceleration of gravity. It is clear that the source term is of the form (4), with bðxÞ ¼ zðxÞ and
G ¼ ½0;�gh�T. The SWE present so called equilibrium solutions for fluid at rest whereby the momentum flux
and source term cancel each other leading to a flat free surface i.e.: For uðx; tÞ ¼ 0, oh=ot ¼ 0 and the second
equation gives:
1

2

oðgh2Þ
ox
ðx; tÞ ¼ �gh

dz
dx
ðxÞ () fðx; tÞ ¼ hðx; tÞ þ zðxÞ ¼ C ð50Þ
This type of solutions should also be kept at the discrete level.

Definition 4. [11,12] A numerical scheme for solving (49) verifies the C-property if for a stationary equilibrium
solution it yields:
hn
i þ zi ¼ C; and un

i ¼ 0 8ði; nÞ 2 Z�N ð51Þ
Proposition 5. Under one of the following two forms of discretisation of the source term at the corrector step:

(i) gh dz
dx

� 	n

i
¼ g

4Dx ðh
n
iþ1=2 þ hn

i�1=2Þðziþ1 � zi�1Þ,
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or

(ii) gh dz
dx

� 	n

i
¼ g

8Dx ðh
n
iþ1 þ 2hn

i þ hn
i�1Þðziþ1 � zi�1Þ,

the SRNH scheme verifies the C-property.

Proof. Let W ðx; tÞ be a stationary solution. Hence uðx; tÞ ¼ 0. In such case, system (1) is equivalent to:
oF ðW ðx; tÞÞ
ox

¼ Qðx; tÞ; ð52Þ� � � � � �

with W ðx; tÞ ¼ hðx; tÞ

0
, F ¼ 0

1
2
gh2ðx; tÞ and Q ¼ 0

�gh dz
dx

The eigenvalues of the flux jacobian are:
�k1 ¼ ��c and �k2 ¼ �c ð53Þ

with �c2 ¼ g

hn
i þhn

iþ1

2
and approximation to the speed of gravity waves at cell interface xiþ1=2. The change matrix R

and the inverse change matrix R�1 are:
R ¼
1 1

��c �c


 �
and R�1 ¼ 1

2�c

�c �1

�c 1


 �
ð54Þ
According to (45), the predictor step gives:
W n
iþ1

2
¼

hn
i þhn

iþ1

2

� �c
2
ðhn

iþ1 þ ziþ1 � hn
i � ziÞ

" #
¼

hn
i þhn

iþ1

2

� �c
2

fn
iþ1 � fn

i

� 	" #
ð55Þ
and the corrector step:
hnþ1
i

qnþ1
i

" #
¼

hn
i

qn
i

� �
� rg

2

0

ðhn
iþ1=2Þ

2 � ðhn
i�1=2Þ

2

" #
þ DtQn

i ð56Þ
In order that the solution remains stationary W nþ1
i ¼ W n

i , and the flux and source discretisations must cancel
out. This leads to:
g
2
½ðhn

iþ1=2Þ
2 � ðhn

i�1=2Þ
2� ¼ �g h

dz
dx


 �n

i

ð57Þ
or, since hiþ1=2 ¼ ðhiþ1 þ hiÞ=2, to:
g
8Dx
ðhn

iþ1 þ 2hn
i þ hn

i�1Þðhiþ1 � hi�1Þ ¼ �g h
dz
dx


 �n

i

ð58Þ
but for a stationary solution: hiþ1 � hi�1 ¼ zi�1 � ziþ1. Hence:
g
8Dx
ðhn

iþ1 þ 2hn
i þ hn

i�1Þðziþ1 � zi�1Þ ¼ g h
dz
dx


 �n

i

ð59Þ
which is equivalent to:
g
4Dx
ðhn

iþ1=2 þ hn
i�1=2Þðziþ1 � zi�1Þ ¼ g h

dz
dx


 �n

i

ð60Þ
when un
i ¼ 08i, what completes the proof. h

In order to show the performance of the SRNH for computing solutions of the SWE, several examples are
shown in the following paragraphs.

4.1. The lake at rest problem

This example was first proposed in [11] to test the C-property compliance of a method. A lake with an irreg-
ular bottom is filled with water. The free surface must remain horizontal and water velocity should be zero at
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Fig. 3. The lake at rest problem. The free surface of water remains horizontal (left) and the flow rate stays exactly zero (right).
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all times. Fig. 3 shows the computed free surface (left) and velocity (right) after several thousand time steps. As
expected the body of water remains exactly at rest.

4.2. Flow over a bump

The exact steady state solution shows a constant discharge (q ¼ hu) but variable free surface and velocity
due to the influence of the bed forcing. Depending on the discharge and the inflow and outflow depths, three
different flow regimes appear: Subcritical flow all along the reach, transcritical (subcritical to supercritical)
without shock and transcritical with shock (smooth subcritical to supercritical, then back to subcritical across
a shock). The bump equation used in the following examples is the one given in [60]:
Fig. 4.
zðxÞ ¼ 0:2� 0:05ðx� 10Þ2; if 0 < x < 12

0 otherwise

(
ð61Þ
The following examples have been computed on a mesh with 100 cells. Fig. 4 shows a comparison between the
exact and numerical solution, for the first (subcritical) regime. Left plot displays free surface elevation and
right plot Froude number ðF ¼ u=

ffiffiffiffiffi
gh
p
Þ. The agreement between the numerical and the exact solution can

be considered satisfactory. The smooth transcritical regime can be seen in Fig. 5. Again satisfactory agreement
between the exact and numerical solution is found. The transcritical case with shock is presented in Fig. 6. The
shock is well captured with only a small glitch visible in the free surface plot at the downstream end of the
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Comparison between numerical and exact solution for subcritical flow over bump. Free surface (left) and Froude number (right).
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Fig. 5. Transcritical flow over a bump without shock. Free surface (left) and Froude number (right).
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Fig. 6. Transcritical flow over a bump with shock. Free surface (left) and Froude number (right).
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shock. The results presented in these examples are comparable to those found in the literature (for example
[12,23,45,47]).

4.3. Dam break flow over a step

This example corresponds to a Riemann problem with a singular source function. It is hence doubly sin-
gular (regarding the initial condition and the source term that becomes a Dirac delta). The particular initial
data and bed elevation of the example are displayed in Table 1.

The solution can be exactly computed [3], and for the data above it consists of an expansion wave, a non-
linear discontinuity at the bed step and a travelling shock wave.
Table 1
Initial data for the dam break over a step problem

Left Right

h 5.0 1.0
u 0.0 0.0
z 0.0 1.0
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Fig. 7. Dam break problem over a step computed with 200 cells. Water depth (left) and velocity (right) at t = 0.7s. 200 cells.
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Fig. 7 shows the numerical solution computed with 200 cells superimposed to the exact one. Left plot cor-
responds to water depth and right plot to water velocity. All the waves are correctly captured with some
smearing of the expansion fan. Fig. 8 shows the same comparison for flow rate, q ¼ hu, and total head,
H ¼ hþ zþ u2=2g. These quantities should be constant across the bed step, as it can be realized in the figure,
except for a very small perturbation in two points neighbouring the bed discontinuity. The perturbation is
more remarkable for the flow rate but almost negligible for the head.

Table 2 provides a comparison of the numeric values of the two constant states that make up the Rie-
mann solution computed exactly and numerically. It can be said that the constant states are sufficiently well
captured by the numerical scheme in the 200 cell mesh used. Fig. 9 depicts an error convergence plot in the
L1 norm for the water depth and the velocity. The two curves have an average slope slightly in excess of 0.6.
However this value shows a tendency to decrease as the mesh is refined, eventually leading to a stagnation
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Fig. 8. Dam break problem over a step computed with 200 cells. Flow rate (left) and total head (right) at t = 0.7s.

Table 2
Comparison between exact and numerically computed constant states on a 200 cell mesh

Constant State 1 Constant State 2

Exact Numerical Exact Numerical

h 3.611 3.601 2.262 2.262
u 2.102 2.115 3.355 3.357
Fr 0.353 0.356 0.713 0.713
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Fig. 10. Double rarefaction and dry out of a step. Free surface elevation (left) and flow rate (rifgt) at t = 1s. The step geometry can be seen
in the left plot centred around x = 11m.
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Fig. 9. L1 Convergence plot of the velocity and the depth for the dam break over a step.
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of the convergence. This undesirable behaviour is problem dependent and manifests itself more strongly for
some initial data than for others. The stagnation tendency appears also for other systems of equations with
singular source terms as will be shown later for the Euler equations. Furthermore, most finite volume meth-
ods can suffer from this behaviour. An explanation of this phenomenon together with a possible cure is dis-
cussed in Section 7.

4.4. Dry out by a double rarefaction over a step

In this test, first proposed in [23] the combined ability of the method to deal with a step bottom function
and dry zones (h = 0) is shown. Two rarefaction fans travelling in opposite directions create a dry zone or vac-
uum. The left running rarefaction attains and passes over a stepped bed elevation. Here the exact solution is
not available, but results shown in Fig. 10 compare well with those presented in the original reference.

5. Application to the non-isentropic Euler equations in a duct of variable cross section

In this paragraph the quasi one dimensional, unsteady, compressible flow of a gas along a nozzle with var-
iable cross section AðxÞ is considered. The governing (Euler) equations can be written:



Table
Initial

q
u

p

A
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o

ot

qA

qAu

qAE

264
375þ o

ox

qAu

qAðu2 þ p=qÞ
qAuH

264
375 ¼ 0

p dA
dx

0

264
375 ð62Þ
where q, u and p are the gas density, velocity and pressure respectively. E and H represent the total energy and
total enthalpy:
E ¼ p
ðc� 1Þqþ

u2

2
H ¼ cp

ðc� 1Þqþ
u2

2
ð63Þ
with c the ratio of specific heats (in all numerical examples c has been taken as 1:4) and the perfect gas law
applies. By calling the conservative variables m1 ¼ qA, m2 ¼ qAu, and m3 ¼ qAE, system (62) can be written:
o

ot

m1

m2

m3

264
375þ o

ox

m2

ð3�cÞm2
2

2m1
þ ðc� 1Þm3

ð1�cÞm2
2

2m1
þ cm3

2664
3775 ¼

0
ð1�cÞm2

2

2m2
1

þ ðc�1Þm3

2A

� �
dA
dx

0

264
375 ð64Þ
which is clearly in the form (1) with source term (4).
The SRNH can be applied straightforwardly to system (62). The source term discretisation at the predictor

step can be performed as:
p
dA
dx


 �n

iþ1=2

¼ piþ1 þ pi

2Dx
ðAiþ1 � AiÞ ð65Þ
And for the corrector step:
p
dA
dx


 �n

i

¼ piþ1 þ 2pi þ pi�1

4

ðAiþ1 � Ai�1Þ
2Dx

ð66Þ
although other choices are possible.
As an example of the performance of the method, the computation of a shock tube problem with dis-

continuous cross section is shown. This test corresponds also to a Riemann problem with a singular source
term and the exact solution can also be computed analytically (see [5]). The initial data are displayed in
Table 3 and the discontinuity is located at x = 5. For this case, the solution consists of a left running rar-
efaction, a stationary discontinuity at x = 5 due to the cross section area change, a right running contact
and a shock.

Fig. 11 shows a comparison between the exact and the numerical solution for density (left) and Mach
number (right). The cross section is also shown as a solid line in the Mach plot. Fig. 12 corresponds to
the same comparison for the entropy (left) and the mass flow (right) that should be constant across the duct
cross section discontinuity. The performance of the scheme is directly related to its ability to capture the
constant states to both sides of the cross section discontinuity as well as to resolve the different waves: Rar-
efaction, stationary discontinuity, moving contact and shock. Overall the numerical solution computed with
200 nodes shows good agreement with the exact one. It is worth noting that the SRNH scheme captures
sharply the stationary contact with no intermediate points in this particular case. The right running contact
is a linear wave and hence it is diffused. Also the numerical mass flow and entropy remain constant across
3
data for the shock tube problem
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Fig. 11. Shock tube problem with discontinuous cross section computed with 200 cells. Density (left) and Mach number (right) at t = 2s
(the duct cross section area is plotted also as a dotted line in the Mach plot).
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Table 4
Comparison between exact and numerically computed constant states on a 200 cell mesh

Constant State 1 Constant State 2 Constant State 3

Exact Numerical Exact Numerical Exact Numerical

q 1.433 1.427 1.285 1.287 2.208 2.211
u 0.661 0.666 1.105 1.107 1.105 1.107
p 3.764 3.747 3.231 3.237 3.231 3.238
M 0.345 0.347 0.589 0.590 0.772 0.773
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the cross section discontinuity as the theory predicts. Table 4 shows a comparison of the numerical versus
exactly computed constant intermediate states. The agreement can be considered good.

Fig. 13 displays a convergence plot in the L1 norm for the gas density and velocity. The average slope is
slightly below 0.5 for the density and slighlty above 0.4 for the velocity. In this case the convergence decay
is more clearly visible than for the SWE test (Fig. 9), with both curves rapidly approaching a stagnation con-
dition. This phenomenon is analyzed in Section 7.



-4

-3

-2

-1

-8 -7 -6 -5 -4 -3 -2 -1

ρ

log(err)

log(dx)

err(  )
err(u)

Fig. 13. L1 Convergence plot of the density and velocity for the shock tube problem with cross section discontinuity.
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6. Application of the SRNH scheme to a multiphase flow model problem: The Ransom faucet problem

This section is devoted to the extension of the SRNH scheme to biphasic (liquid–gas) flow systems by
means of a four equation single pression model. The system can be written as (1):
oW
ot
þ oF ðW Þ

ox
¼ Q1 þ Q2 ð67Þ
with conservative variables, W, and flux vector F:
W ðx; tÞ ¼

avqv

avqvuv

alql

alqlul

0BBB@
1CCCA; F ðW ðx; tÞÞ ¼

avqvuv

avqvu2
v

alqlul

alqlu
2
l

0BBB@
1CCCA ð68Þ
a, q and u represent the mass fraction, density and velocity respectively of the vapour (subindex v) or the liquid
(subindex l). The source term QðW Þ is split into two parts, Q1 and Q2. Q1 accounts for the interchange of
momentum between both phases and Q2 represents just the effect of the acceleration due to gravity (g):
Q1ðW Þ ¼ �

0

av
op
ox

0

al
op
ox

0BBB@
1CCCA; Q2ðW Þ ¼

0

avqvg

0

alqlg

0BBB@
1CCCA ð69Þ
The pressure, p, is common to both phases. In order to close the system the following relations apply:
av þ al ¼ 1. The isentropic equation of state for the gas phase, p ¼ cqc

v, and a equation of state for the liquid:
ql ¼ klpa. Here C, c, a and kl are constants. Typical numerical values (in International System units) are:
C ¼ 105, c ¼ 1:4, a ¼ 4:37� 10�5 and kl ¼ 987; 57.

The system represented by Eqs. (68) and (69) is not hyperbolic. Therefore the flux jacobian rF ðW Þ cannot
be diagonalised in R what makes it difficult the computation of a sign matrix as required by the SRNH
scheme.

In order to overcome this difficulty the system is written as follows:
oW ðx; tÞ
ot

þrF ðW ðx; tÞÞ oW ðx; tÞ
ox

þ CðW Þ oW ðx; tÞ
ox

¼ Q2ðx;W Þ ð70Þ
with CðW Þ oW ðx;tÞ
ox ¼ �Q1ðx;W Þ.

The source term Q2 has not the form (4) and hence does not fit within the framework for which SRNH
scheme is developed. For this reason Eq. (70) is integrated in two steps. The first step gets rid of the weight
term, Q2, by an explicit Euler time integration:
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obW
ot ¼ Q2ð bW ÞbW ðx; tnÞ ¼ W nðxÞ

(
ð71Þ
and then the SRNH scheme is applied to the system:
oW ðx;tÞ
ot þ

oF ðW ðx;tÞÞ
ox þ Q1ðx;W Þ ¼ 0

W ðx; tnÞ ¼ bW nþ1ðxÞ

(
ð72Þ
Taking AðW Þ ¼ rF ðW ðx; tÞÞ þ CðW Þ, the first equation of (72) can be written in quasilinear form:
oW ðx; tÞ
ot

þ AðW Þ oW ðx; tÞ
ox

¼ 0; ð73Þ
with
AðW Þ ¼

0 1 0 0

��u2
v þ

c�p
qv

2�uv
c�p
�ql

0

0 0 0 1
�al
�av

c�p
�qv

0 ��u2
l þ

�al
�av

c�p
�ql

2�ul

0BBB@
1CCCA: ð74Þ
The predictor step of SRNH scheme is applied to the system (72) written in the form (73) as follows:
W n
iþ1

2
¼ 1

2
ðW n

i þ W n
iþ1Þ �

1

2
sgn ðAðW ÞÞðW n

iþ1 � W n
i Þ ð75Þ
with W ¼ ðW n
iþ1 þ W n

i Þ=2. The corrector step is simply:
W nþ1
i ¼ W n

i � r F W n
iþ1

2

� �
� F W n

i�1
2

� �� �
þ DtðQ1Þ

n
i ð76Þ
with the following approximation of ðQ1Þ
n
i :
ðQ1Þ
n
i ¼

1

2Dx

0

ðavÞni ðpn
iþ1 � pn

i�1Þ
0

ðalÞni ðpn
iþ1 � pn

i�1Þ

26664
37775 ð77Þ
Keeping in mind that the first step of SRNH scheme is essentially an upwinding of the variables to compute
W n

jþ1=2, the only difficulty lies in the calculation of the sgn ðAÞmatrix because, as stated before, for this problem
it is not diagonalizable and its eigenvalues are complex.

In this work the method of Alouges [6] has been used to compute the real part of the eigenvalues of A and
from these an approximate sign matrix. The predictor step of SRNH scheme has been applied making use of
the approximate sign matrix.

6.1. Density perturbation method

Another way to overcome the problem of the calculation of the sign matrix for multiphase flows is the
method proposed by Toumi and his co-authors [19] based upon an extension of the domain of hyperbolicity
of system (68), (69). This is accomplished by means of a modification of the term Q1, that becomes:
Q1ðW Þ ¼

0

av
op
ox þ dðp � pint

v Þ oav

ox

0

al
op
ox þ dðp � pint

l Þ oal
ox

26664
37775 ð78Þ
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where formula:
dðp � pint
k Þ

oak

ox
ð79Þ
accounts for a pressure correction, and pint
k is the interfacial pressure between both phases with d a numeric

constant. There are several forms of the pressure difference ðp � pint
k Þ in the literature. Here we adopt the clo-

sure law for bubbly flow given by Lahey [41]:
p � pint
v ¼ 0

p � pint
l ¼ CpðavÞqlðuv � ulÞ2

(
ð80Þ
where CpðavÞ ¼ 1
4
ð1� avÞ for instance.

In what follows we will call: hl ¼ dðp � pint
l Þ

In order to calculate sgn ðAÞ a perturbation analysis based on the density is performed [19]. The dimension-
less density of each phase is defined as: fqv ¼ qv

q0
v

and eql ¼ ql
q0

l
. With q0

v and q0
l a reference density of the gas and

liquid phase respectively. Let the parameter � ¼ q0
v

q0
l
, with �� 1 in view of the density difference between the

liquid and vapour phases. Further assume that the liquid phase is incompressible, i.e.: ql ¼ q0
l or eql ¼ 1.

Now system (72) is written again in quasilinear form (73), with AðW Þ:
AðW Þ ¼

0 1 0 0

�u2
v þ avp;1 2uv avp;3 0

0 0 0 1

�alp;1 þ hlal;1 0 �u2
l þ �alp;3 þ hlal;3 2ul

0BBB@
1CCCA ð81Þ
In such case following [14,26] one has: avp;1 ¼ cp
qv

, p;3 ¼ cp
avql

, since ql ¼ q0
l is constant one has p;3 ¼ cp

avq0
v

q0
v

q0
l
¼

� cp
avq0

v
, al;1 ¼ 0 and al;3 ¼ 1

ql
.

Calling
cp
qv

¼ c2
1 and c2

2 ¼
hl

ql
; ð82Þ
and going back to (81) one can write: AðW Þ ¼ A0ðW Þ þ �HðW Þ with
A0ðW Þ ¼

0 1 0 0

�u2
v þ c2

1 2uv 0 0

0 0 0 1

0 0 �u2
l þ c2

2 2ul

0BBB@
1CCCA ð83Þ
and
HðW Þ ¼

0 0 0 0

0 0 cp
q0

v
0

0 0 0 0

alp;1 0 alp;3 0

0BBBB@
1CCCCA ð84Þ
A0ðW Þ can be diagonalized. Its characteristic polynomial is:
P 0ðkÞ ¼ ððk� uvÞ2 � c2
1Þððk� ulÞ2 � c2

2Þ ð85Þ

that admits four distinct real eigenvalues:
k1 ¼ uv � c1; k2 ¼ uv þ c1; k3 ¼ ul � c2; k4 ¼ ul þ c2 ð86Þ

The corresponding right eigenvector or change matrix, R, is:
RðW Þ ¼

1 1 0 0

k1 k2 0 0

0 0 1 1

0 0 k3 k4

0BBB@
1CCCA ð87Þ
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The perturbation theory of linear operators [34,15,37] states that if a linear operator B is diagonisable in R

with distinct eigenvalues and it is perturbed to B0 ¼ Bþ �H with � a small real number, then B0 can be also
diagonalised in R with distinct eigenvalues, these are close to the eigenvalues of B and the following relation
holds:
jk0j � kjj ¼ 	ð�Þ: ð88Þ
With this result in mind it is justifiable to apply SRNH scheme to solve system (72) as follows:
W n
iþ1

2
¼ 1

2
ðW n

i þ W n
iþ1Þ � 1

2
sgn ðA0ðW ÞÞðW n

iþ1 � W n
i Þ

W nþ1
i ¼ W n

i � r F W n
iþ1

2

� �
� F W n

i�1
2

� �� �
þ DtðS1Þni ;

8<: ð89Þ
with:
ðQ1Þ
n
i ¼

0
ðavÞni
2Dx ðpn

iþ1 � pn
i�1Þ

0
ðalÞni
2Dx ðpn

iþ1 � pn
i�1Þ � 1

2Dx dðqlÞ
n
i ðavÞni ððulÞni � ðuvÞni Þ

2ððalÞniþ1 � ðalÞni�1Þ

26664
37775 ð90Þ
6.2. Ransom faucet tests

The performance of SRNH scheme for solving system (67) is shown in the following examples computed.
They regard the so called Ransom faucet problem [49] in which a water jet exits a faucet downwards in the
vertical direction surrounded by standing air. The initial condition corresponds to a cylindrical jet. A sketch
is shown in Fig. 14. The liquid volume fraction, al, is in this case the ratio of the jet section to the total cross
section and the void fraction, av, the ratio of the cross section occupied by the air to the total cross section. By
the effect of gravity the jet accelerates while narrowing its cross section. This corresponds to a wave of void
fraction propagating downstream. (The hypothesis is made here that the jet does not break up in drops).

The initial and boundary conditions corresponding to the Ransom faucet test are given in Fig. 14 and
Table 5:

Two tests are shown, one for a low initial void fraction (avðt ¼ 0Þ ¼ 0:2) and other for a larger one
(avðt ¼ 0Þ ¼ 0:6). It proves more difficult to compute flows with lower void fractions.

The numerical results are compared to the exact solution We of an analogous but well posed problem,
obtained supposing the liquid and vapour densities are constant. The reference solution is given by:
av;eðx; tÞ ¼
1� al;initul;initffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gxþu2
l;init

p if x 6 ul;initt þ gt2

2

1� av;init; otherwise

8<: ð91Þ
Fig. 14. Sketch of the Ransom faucet problem.



Table 5
Initial and boundary conditions for Ransom faucet problem

Initial condition: Boundary conditions:

8x 2 ½x0; xl�, avðt ¼ 0Þ ¼ a0, inlet (x0 ¼ 0): avð0; tÞ ¼ a0,
ulðt ¼ 0Þ ¼ 10, uvðt ¼ 0Þ ¼ 0, inlet (x0 ¼ 0): ulð0; tÞ ¼ 10,
qvðt ¼ 0Þ ¼ 1, qlðt ¼ 0Þ ¼ 988; 0638, inlet (x0 ¼ 0): uvð0; tÞ ¼ 0,
pðt ¼ 0Þ ¼ 105 outlet (xl ¼ 12): pð12; tÞ ¼ 105
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and
0.
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Fig. 1

0

0

0

0

0

0

0

0

ul;eðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ u2

l;init

q
if x 6 ul;initt þ gt2

2

ul;init þ gt; otherwise

(
ð92Þ
Fig. 15 shows the void fraction, av, computed with different mesh sizes (from 50 to 600 nodes) at time t ¼ 0:6 s
for two initial values of the void fraction avð0Þ.

The left plot corresponds to avð0Þ ¼ 0:6 and the right plot to avð0Þ ¼ 0:2. The former case has been com-
puted with the method of Alouges for the calculation of the sign matrix in the predictor step. The second with
the regularization method of Toumi as explained earlier. The advantage of the method of Toumi lies in that it
proves more robust despite the need for the adjustable hyperbolicity parameter d (Eq. (78)). Actually, the case
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5. Void fraction at t = 0.6s for initial value of 0.6 (left) and 0.2 (right) computed with SRNH scheme on a sequence of meshes.

0 2 4 6 8 10 12
.15

.2

.25

.3

.35

.4

.45

.5

t=0.1 sec
t=0.2 sec
t=0.3 sec
t=0.4 sec
t=0.5 sec
t=0.6 sec

0 2 4 6 8 10 12
10

11

12

13

14

15

16

t=0.1 sec
t=0.2 sec
t=0.3 sec
t=0.4 sec
t=0.5 sec
t=0.6 sec

Fig. 16. Time evolution of the void fraction (left) and the liquid velocity (right) for an initial void fraction of 0.6.
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avð0Þ ¼ 0:6 cannot be computed with the method of Alouges due to numerical instabilities. Both plots in
Fig. 15 show a reasonable agreement with the exact solution that improves with the mesh size and are com-
parable to those presented by other authors. Nevertheless mid sized meshes (around 200 nodes) provide a suf-
ficiently accurate description of the phenomenon.

Fig. 16 shows the evolution of av (left) and the liquid velocity ul (right) with time. The initial conditions
correspond to avð0Þ ¼ 0:6 and the method of Toumi has been used with d ¼ 5 � 10�4. The propagation of
the front is well predicted numerically with 200 nodes.

7. The convergence stagnation problem

This section is devoted to give an explanation to the convergence stagnation phenomenon observed in the
previous sections. We will show that for a linear scalar equations with source terms of the form (4) with dis-
continuities in the function bðxÞ, convergence of the numerical to the exact solution is prevented. This gives an
indication that a similar behaviour can be found for nonlinear systems, as it has been indeed observed in pre-
vious examples. A cure is also proposed that solves this problem from the theoretical point of view. Let us
consider the scalar equation:
ou
ot
þ a

ou
ox
¼ �u

dz
dx

ð93Þ
with a > 0 and the following source function:
zðxÞ ¼
zL if x < 0

zR if x > 0

�
ð94Þ
In what follows we will call:
Dz ¼ zR � zL ð95Þ

The Riemann problem is posed with the following initial conditions:
uðx; 0Þ ¼ u0ðxÞ ¼
uL if x < 0

uR if x > 0

�
ð96Þ
Its solution is self similar and is made up of a standing discontinuity due to the source term jump at x = 0 and
a right travelling linear shock with speed a. In between the two waves there is a constant state, u*. In view that
the solution is self similar, it must be constant at x ¼ 0� and at x ¼ 0þ. Further uð0�; tÞ ¼ uL and uð0þ; tÞ ¼ u�.
A sketch of the solution is displayed in Fig. 17. The intermediate constant state u* can be computed from the
steady state solution of Eq. (93):
a
du
dx
¼ �u

dz
dx

ð97Þ
Fig. 17. The Riemann solution for the linear equation.
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After integration one obtains the exact value of u* in terms of uL and the problem parameters, a and Dz:
u�exact ¼ uL � e�Dz=a ð98Þ

When a numerical solution to problem (93)–(96) is sought by means of a time marching algorithm, the con-
stant states to the left and right of the initial discontinuity, uð0�; tÞ ¼ uL and uð0þ; tÞ ¼ u�num, are computed as a
steady state solution after a few time steps, when the right running shock is away from the original disconti-
nuity. Application of the SRNH scheme to linear equation (93) with a > 0 leads to:
unþ1
j ¼ un

j � arðun
j � un

j�1Þ þ
r
4
½ðun

jþ1 þ un
j Þðzjþ1 � zjÞ � ðun

j þ un
j�1Þðzj � zj�1Þ� �

r
8
ðun

jþ1 þ 2un
j þ un

j�1Þ

� ðzjþ1 � zj�1Þ ð99Þ
where r ¼ Dt=Dx. In order to obtain the constant state u�num as computed by the numerical method for large t,
Eq. (99) is applied to all the points in the domain, j ¼ 1; 2; . . . ; jL; jR; . . . ; jshock, away and to the left of the right
travelling shock. Here jL stands for the last point where zj ¼ zL and jR for the first point where zj ¼ zR. Note
that jR ¼ jL þ 1. Also jshock stands for the last point before the shock transition. For all points with
j 2 ½1; jshock� the solution does not change with time. It can be written:
unþ1
j ¼ un

j ¼ �uj; j ¼ 1; 2; . . . ; jshock ð100Þ
Also away from points jL and jR the scheme reduces to:
unþ1
j ¼ un

j � arðun
j � un

j�1Þ ð101Þ
Thus for the steady state:
�uj ¼ �uj � arð�uj � �uj�1Þ ð102Þ

or:
�uj ¼ �uj�1 ð103Þ

what leads to:
�uj ¼ uL; j ¼ 1; 2; . . . ; jL � 1 ð104Þ

and
�uj ¼ ujR
¼ u�num; j ¼ jR þ 1; jR þ 2; . . . ; jshock ð105Þ
since ujR
corresponds to the value of uð0þ; tÞ ¼ u� computed by the numerical scheme.

For points jL and jR the scheme reads respectively:
unþ1
jL
¼ un

jL
� arðun

jL
� un

jL�1Þ þ
r
4
ðun

jR
þ un

jL
ÞDz� r

8
ðun

jL�1 þ 2un
jL
þ un

jR
ÞDz ð106Þ

unþ1
jR
¼ un

jR
� arðun

jR
� un

jL
Þ � r

4
ðun

jR
þ un

jL
ÞDz� r

8
ðun

jL
þ 2un

jR
þ un

jRþ1ÞDz ð107Þ
where Dz ¼ zR � zL as usual. At steady state this leads to:
0 ¼ �arð�ujL
� �ujL�1Þ þ

r
4
ð�ujR
þ �ujL

ÞDz� r
8
ð�ujL�1 þ 2�ujL

þ �ujR
ÞDz ð108Þ

0 ¼ �arð�ujR
� �ujL

Þ � r
4
ð�ujR
þ �ujL

ÞDz� r
8
ð�ujL
þ 2�ujR

þ �ujRþ1ÞDz ð109Þ
And now recalling (104) and (105):
0 ¼ �arð�ujL
� uLÞ þ

r
4
ð�ujR
þ �ujL

ÞDz� r
8
ð�uL þ 2�ujL

þ �ujR
ÞDz ð110Þ

0 ¼ �arð�ujR
� �ujL

Þ � r
4
ð�ujR
þ �ujL

ÞDz� r
8
ð�ujL
þ 3�ujR

ÞDz ð111Þ
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which constitute a system of two equations on the two unknowns �ujL and �ujR. Its solution is:
u�num ¼ �ujR
¼ uL

1� Dz
2a þ 3Dz2

64a2

� �
1þ Dz

2a þ 3Dz2

64a2

� 	 ð112Þ
and
�ujL
¼ �ujR

1þ 5Dz
8a

� 	
1� 3Dz

8a

� 	 ð113Þ
Eqs. (112) and (113) above state: (i) the structure of the transition at the source term discontinuity is made of
one point (ujL

) and (ii) the value of constant state u�num as computed by SRNH scheme.
Note that Eq. (112) is the value of u* computed by the SRNH scheme in terms of uL and other problem

variables but not any discretisation parameter such as Dx or Dt. A series development of (112) for Dz=a small
enough gives:
u�num ¼ uL 1� Dz
a
þ 1

2

Dz
a


 �2

� 13

64

Dz
a


 �3

þ . . .

 !
ð114Þ
which is an approximation to u�exact (Eq. (98)) to third order since:
u�exact ¼ uL � e�Dz=a ¼ uL 1� Dz
a
þ 1

2

Dz
a


 �2

� 1

6

Dz
a


 �3

þ . . .

 !
ð115Þ
Comparing (114) with (115) it is clear that the numerically computed intermediate state is different than the
true value. This contributes an error that does not diminish with mesh refining thus leading to a stagnation in
the convergence rate.

The numerical solution will better approach the exact one for small values of the ratio Dz=a that make Eq.
(112) closer to (98), but the numerical solution will not show asymptotic convergence to the exact one with
mesh refining because the scheme computes u�num once and for all for a given Dz=a and its value does not
depend on either Dx or Dt.

It is expected that other numerical schemes present a similar behaviour for this type of problem. For
instance Bermúdez and Vázquez’s numerical method [11] reduces simply to upwinding the source term when
applied to this linear problem. Applying a similar analysis to the one shown above yields the result that: (i)
there are no internal points in the transition at the source term discontinuity for Bermúdez and Vázquez
scheme and (ii) the following expression for u�num is found:
u�num ¼ uL
1� Dz

2a

� 	
1þ Dz

2a

� 	 ¼ uL 1� Dz
a
þ 1

2

Dz
a


 �2

� 1

4

Dz
a


 �3

þ . . .

 !
ð116Þ
which is analogous to (112). This means that Bermúdez and Vázquez’s scheme will also lead to stagnation of
the convergence rate for this problem. An example of this behaviour has been already shown in the SWE case
for Bermúdez and Vázquez and McCormack TVD methods in [4].

Fig. 18 shows a comparison between the exact and numerical solution to problem (93)–(96) for the limiting
case Dz=a ¼ 1, as computed on a 102400 node mesh with SRNH and Vázquez schemes. The numerical value
of u* is clearly wrong for both schemes. However the rest of the solution is computed accurately thanks to the
fine mesh used. Right plot represents the L1 error convergence rate for both schemes. The initial error decay
corresponds to an increasingly better resolution of the solution away from the u* region (in particular the trav-
elling discontinuity). It must be recalled that in the case of a linear equation a discontinuity is heavily smeared
and error around it decreases fast with mesh refinement. Once the error in this region reaches the level of the
mismatch between u�exact and u�num further reductions in it are unimportant because the global error is domi-
nated by the latter, that remains constant, and convergence stops.

Table 6 shows a comparison of the u* values for this problem with uleft ¼ 7:389 and different values of
parameter Dz=a (Column 1). The example shown in Fig. 18 corresponds to Dz=a ¼ 1. Second column of
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Table 6
Comparison of u* values computed for different Dz=a ¼ 1

Dz=a u�exact u�pred�SRNH u�num�SRNH u�pred�Vazquez u�num�Vazquez

1.25 2.1170 1.9503 1.9503 1.7052 1.7051
1.00 2.7183 2.6123 2.6123 2.4630 2.4630
0.50 4.4817 4.4609 4.4609 4.4334 4.4334
0.25 5.7546 5.7513 5.7513 5.7470 5.7470
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the table displays the exact solution value, u�exact ¼ uleft � e�Dz=a. Third column, labelled u�pred�SRNH, corresponds
to u* as predicted by the foregoing analysis for SRNH scheme (Eq. (112)). Fourth column, labelled u�num�SRNH,
gives the value computed numerically by SRNH scheme with 800 nodes. Fifth and sixth columns, labelled
u�pred�Vazquez and u�num�Vazquez respectively, are the same as columns three and four but for Vázquez scheme.
u�num�Vazquez has been computed also with 800 nodes.

As can be seen from the table the u* values predicted by the analysis (Eqs. (112) and (116)) exactly agree
with the numerically computed ones. Also it is clear from the table that the difference between u�exact and u�num

grows with Dz=a, or put in other words, for small values of Dz=a the numerical schemes behave reasonably
well.

Despite this, numerical schemes based upon a true Godunov-type strategy like for instance Greenberg and
LeRoux’s method [32,33,17] made up of the following steps:


 Piecewise constant discretisation of variables within each cell.

 Exact solution of the non-homogeneous Riemann problem at each cell interface.

 Projection (averaging) of the Riemann solution onto the cell.

should consistently approach the exact solution with mesh refining and hence uniformly converge to the exact
solution. The only drawback lies in their high computational cost.

Another way of solving this problem avoiding the use of an exact Godunov method is to regularize the
source term discretisation (and correspondingly the initial data) to ensure that parameter Dz=a is small at each

cell interface. This can be accomplished for instance by taking:
ẑðxÞ ¼ zR þ zL

2
þ zR � zL

2
� tanh

x
CDxp

� �
ð117Þ
and
û0ðxÞ ¼
uR þ uL

2
þ uR � uL

2
� tanh

x
CDxp

� �
ð118Þ
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instead of (94) and (96) with C a numerical constant. The regularisation (117), (118) introduces an error into
the source function computation as well as in the initial conditions that is added to the truncation error of the
scheme and the machine round off error. In the L1 norm, the regularisation error can be easily quantified. For
instance for the error introduced in the source function, Ez, one has:
Fig. 19
numer
Ez ¼
Z þ1

�1
ĵzðxÞ � zðxÞjdx ¼ CðzR � zLÞ lnð2ÞDxp ð119Þ
and a similar expression for the error in the initial conditions is found.
The exponent p in (117) and (118) must be set slightly in excess of the asymptotic convergence order, q, of

the numerical scheme with which the solution will be computed. This is so because if p < q, the global error
convergence will be driven by the initial and source function error due to the regularization and will mask the
convergence of the scheme. On the other hand, p > q can lead to faster initial convergence rates driven by the
initial solution and source function regularization errors that will later, for finer meshes, fall back to the
asymptotic convergence rate of the numerical scheme. This can give the false impression of a reduction of
the convergence rate with mesh refinement. Put in other words: in order that the asymptotic convergence rate
of the numerical method becomes apparent, the regularization of the initial conditions and the source function
must be made to the same or slightly higher order of accuracy as that of the numerical scheme, p � q.

The SRNH and Vázquez methods are formally first order accurate. However it is well known that first
order methods applied to homogeneous linear equations with a discontinuous solution will yield only
O(Dx0:5) convergence [21]. Numerical tests performed on purpose with SRNH scheme on problem (93)–(96)
with zR ¼ zL show exactly O(Dx0:5) convergence. Hence in the linear case q ¼ 0:5. In order to not mask this
tendency, in the following example, p ¼ 0:6 has been chosen.

Fig. 19 shows the same test case as Fig. 18 computed with source function and initial condition given by
expressions (117) and (118) with only 800 nodes (to be compared with 102400 nodes in Fig. 18). Left plot
depicts the comparison between numerical and exact solutions. It is worth noting that the u* state is exactly
captured by both the SRNH and Vázquez schemes despite the strong smearing of the transitions. Right plot
shows the L1 error convergence rate for a sequence of meshes. It is a clean straight line with 0:5 slope for both
schemes, as expected.

For a system of nonlinear equations the U* state (s) affect the configuration (speed and intensity) of the rest
of the waves and hence the disagreement between the numerical and exact solutions can extend over the whole
domain of integration leading to a further degradation of the convergence rate.

The same regularization procedure of (117), (118) can be applied to the system case with similar results. In
the following test, the dam break over a step displayed in Section 4.3 has been computed with a regularized
initial condition and source function. Since SRNH scheme is a formally first order method when applied to
nonlinear homogeneous problems (q = 1) the theoretical convergence rate, a value of p ¼ 1:1 has been chosen
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Fig. 20. Smoothed dam break problem over a smoothed step. Water depth (left) and velocity (right) at t = 0.7s.
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in (117), (118). Figs. 20 and 21 show the same problem as Figs. 7 and 8 computed with the bed and initial data
regularisation on the same 200 cell mesh. The solution is slightly more diffused at the expansion wave but the
overall resolution is equivalent. Further the regularisation prevents the small glitches at the bed step position
in the flow plot (q) of Fig. 8 left. The constant states 1 and 2 are correctly computed to practically the same
accuracy as with the abrupt initialision run. They can be checked in Table 7, to be compared with those in
Table 2. Note however that the numerically computed states in Table 2 will not change with mesh refinement
whereas those in Table 7 will uniformly approach the exact values when the mesh is refined.

Finally, Fig. 22 displays the L1 error, to be compared with that of Fig. 9. The error convergence rate is a
straight line with slope 1 as expected.
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Fig. 21. Smooth dam break problem over a smoothed step. Flow rate (left) and total head (right) at t = 0.7s.

Table 7
Comparison between exact and numerically computed constant states for the smooth initialisation dam break test on a 200 cell mesh

Constant state 1 Constant state 2

Exact Numerical Exact Numerical

h 3.611 3.602 2.262 2.260
u 2.102 2.112 3.355 3.355
Fr 0.353 0.355 0.713 0.712
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Fig. 22. L1 Convergence plot of the velocity and the depth for the dam break over a step with smooth initialisation.
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8. Conclusions

A numerical scheme has been presented for the computation of transient and steady solutions of systems of
partial differential equations of the hyperbolic type with source terms. The method is based upon an approx-
imate integration of the equations over finite volume cells in two steps. This leads to the appearance of the sign
matrix of the flux jacobian in the first step giving rise to a sort of upwinding of the characteristic variables. The
final or updating step relies solely on physical flux and source computations instead of upon numerical flux or
numerical source functions. It reverts to the so called VFRoe method in the case of homogeneous linear
systems.

The scheme is computationally cheap as compared to those relying upon the calculation of an exact or
approximate Riemann solution to be used á la Godunov. The SRNH method has been analysed in the scalar
and in the homogeneous linear system case and has been applied to several non linear problems of hyperbolic
character with source terms of interest in fluid dynamics. The numerical examples presented show a good
behaviour of the method for the Shallow Water and Euler equations with strong source terms forcing. In par-
ticular it has been proven that it respects the equilibrium property in still shallow water conditions. Further-
more, the construction of SRNH method allows a natural extension to systems of partial differential equations
that are not hyperbolic or that are so only within a limited domain in the phase space, such as the Modified
Common Pressure Bifluid Model. The tests concerning the Ransom Faucet Problem exhibit as good resolution
as other available methods for similar conditions at, in our view, less cost.

The application of SRNH scheme to problems with discontinuous source functions has led to the analysis
of the so called convergence stagnation phenomenon. An explanation of this undesirable behaviour as well as
closed form expressions for the numerically computed constant states associated with this problem have been
given for a model scalar linear equation. A regularization of the initial and source functions is proposed to
cure the convergence stagnation phenomenon.

The SRNH scheme seems to be a practical, robust numerical method for hyperbolic and quasi hyperbolic
systems of partial differential equations based upon simple ideas and economy that works as well as more
complex methods.
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